bidirectional a star Algorithm
The bidirectional A* algorithm is an extension of the popular A* search algorithm, which is known for its efficiency in finding the shortest path between two points in a graph or grid. This algorithm operates by exploring the graph from both the start and the goal nodes simultaneously, meeting in the middle, effectively reducing the search space and improving the performance. The bidirectional A* algorithm maintains two sets of open nodes, one for the forward search (from the start node) and one for the backward search (from the goal node). During each iteration, the algorithm selects the node with the lowest combined cost (g-cost and h-cost) from both sets and expands its neighbors, updating their costs and maintaining their parent pointers. The search continues until the two searches meet, and the optimal path is reconstructed by traversing the parent pointers from the meeting point back to the start and goal nodes.
The key advantage of the bidirectional A* algorithm is its improved performance compared to the unidirectional A* search, particularly in large graphs or complex environments. By searching from both the start and the goal nodes, the algorithm can significantly reduce the number of nodes that need to be expanded, leading to a faster solution. This is especially useful in situations where there is a clear and direct path between the start and goal nodes, or when the graph has a high branching factor. Furthermore, the bidirectional A* algorithm inherits the optimality and admissibility properties of the original A* search, guaranteeing that the solution found is indeed the shortest path, provided that the heuristic function used is consistent (or monotonic). Overall, the bidirectional A* algorithm provides an effective and efficient method for solving the shortest path problem in various applications, such as robotics, navigation, and artificial intelligence.
""" https://en.wikipedia.org/wiki/Bidirectional_search """ import time from math import sqrt from typing import List, Tuple # 1 for manhattan, 0 for euclidean HEURISTIC = 0 grid = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class Node: """ >>> k = Node(0, 0, 4, 3, 0, None) >>> k.calculate_heuristic() 5.0 >>> n = Node(1, 4, 3, 4, 2, None) >>> n.calculate_heuristic() 2.0 >>> l = [k, n] >>> n == l[0] False >>> l.sort() >>> n == l[0] True """ def __init__(self, pos_x, pos_y, goal_x, goal_y, g_cost, parent): self.pos_x = pos_x self.pos_y = pos_y self.pos = (pos_y, pos_x) self.goal_x = goal_x self.goal_y = goal_y self.g_cost = g_cost self.parent = parent self.h_cost = self.calculate_heuristic() self.f_cost = self.g_cost + self.h_cost def calculate_heuristic(self) -> float: """ Heuristic for the A* """ dy = self.pos_x - self.goal_x dx = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(dx) + abs(dy) else: return sqrt(dy ** 2 + dx ** 2) def __lt__(self, other) -> bool: return self.f_cost < other.f_cost class AStar: """ >>> astar = AStar((0, 0), (len(grid) - 1, len(grid[0]) - 1)) >>> (astar.start.pos_y + delta[3][0], astar.start.pos_x + delta[3][1]) (0, 1) >>> [x.pos for x in astar.get_successors(astar.start)] [(1, 0), (0, 1)] >>> (astar.start.pos_y + delta[2][0], astar.start.pos_x + delta[2][1]) (1, 0) >>> astar.retrace_path(astar.start) [(0, 0)] >>> astar.search() # doctest: +NORMALIZE_WHITESPACE [(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (2, 3), (3, 3), (4, 3), (4, 4), (5, 4), (5, 5), (6, 5), (6, 6)] """ def __init__(self, start, goal): self.start = Node(start[1], start[0], goal[1], goal[0], 0, None) self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None) self.open_nodes = [self.start] self.closed_nodes = [] self.reached = False def search(self) -> List[Tuple[int]]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() current_node = self.open_nodes.pop(0) if current_node.pos == self.target.pos: self.reached = True return self.retrace_path(current_node) self.closed_nodes.append(current_node) successors = self.get_successors(current_node) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(child_node) else: # retrieve the best current path better_node = self.open_nodes.pop(self.open_nodes.index(child_node)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(child_node) else: self.open_nodes.append(better_node) if not (self.reached): return [(self.start.pos)] def get_successors(self, parent: Node) -> List[Node]: """ Returns a list of successors (both in the grid and free spaces) """ successors = [] for action in delta: pos_x = parent.pos_x + action[1] pos_y = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( pos_x, pos_y, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, parent, ) ) return successors def retrace_path(self, node: Node) -> List[Tuple[int]]: """ Retrace the path from parents to parents until start node """ current_node = node path = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) current_node = current_node.parent path.reverse() return path class BidirectionalAStar: """ >>> bd_astar = BidirectionalAStar((0, 0), (len(grid) - 1, len(grid[0]) - 1)) >>> bd_astar.fwd_astar.start.pos == bd_astar.bwd_astar.target.pos True >>> bd_astar.retrace_bidirectional_path(bd_astar.fwd_astar.start, ... bd_astar.bwd_astar.start) [(0, 0)] >>> bd_astar.search() # doctest: +NORMALIZE_WHITESPACE [(0, 0), (0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5), (5, 5), (5, 6), (6, 6)] """ def __init__(self, start, goal): self.fwd_astar = AStar(start, goal) self.bwd_astar = AStar(goal, start) self.reached = False def search(self) -> List[Tuple[int]]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() current_fwd_node = self.fwd_astar.open_nodes.pop(0) current_bwd_node = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: self.reached = True return self.retrace_bidirectional_path( current_fwd_node, current_bwd_node ) self.fwd_astar.closed_nodes.append(current_fwd_node) self.bwd_astar.closed_nodes.append(current_bwd_node) self.fwd_astar.target = current_bwd_node self.bwd_astar.target = current_fwd_node successors = { self.fwd_astar: self.fwd_astar.get_successors(current_fwd_node), self.bwd_astar: self.bwd_astar.get_successors(current_bwd_node), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(child_node) else: # retrieve the best current path better_node = astar.open_nodes.pop( astar.open_nodes.index(child_node) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(child_node) else: astar.open_nodes.append(better_node) if not self.reached: return [self.fwd_astar.start.pos] def retrace_bidirectional_path( self, fwd_node: Node, bwd_node: Node ) -> List[Tuple[int]]: fwd_path = self.fwd_astar.retrace_path(fwd_node) bwd_path = self.bwd_astar.retrace_path(bwd_node) bwd_path.pop() bwd_path.reverse() path = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() init = (0, 0) goal = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) start_time = time.time() a_star = AStar(init, goal) path = a_star.search() end_time = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") bd_start_time = time.time() bidir_astar = BidirectionalAStar(init, goal) path = bidir_astar.search() bd_end_time = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")